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G protein stimulatory α-subunit (Gαs)-coupled heptahelical receptors
regulate cell processes largely through activation of protein kinase A
(PKA). To identify signaling processes downstream of PKA, we de-
leted both PKA catalytic subunits using CRISPR-Cas9, followed by a
“multiomic” analysis in mouse kidney epithelial cells expressing the
Gαs-coupled V2 vasopressin receptor. RNA-seq (sequencing)–based
transcriptomics and SILAC (stable isotope labeling of amino acids in
cell culture)-based quantitative proteomics revealed a complete loss
of expression of the water-channel gene Aqp2 in PKA knockout cells.
SILAC-based quantitative phosphoproteomics identified 229 PKA
phosphorylation sites. Most of these PKA targets are thus far unan-
notated in public databases. Surprisingly, 1,915 phosphorylation sites
with the motif x-(S/T)-P showed increased phosphooccupancy, point-
ing to increased activity of one or moreMAP kinases in PKA knockout
cells. Indeed, phosphorylation changes associated with activation of
ERK2 were seen in PKA knockout cells. The ERK2 site is downstream
of a direct PKA site in the Rap1GAP, Sipa1l1, that indirectly inhibits
Raf1. In addition, a direct PKA site that inhibits theMAP kinase kinase
kinase Map3k5 (ASK1) is upstream of JNK1 activation. The datasets
were integrated to identify a causal network describing PKA signal-
ing that explains vasopressin-mediated regulation of membrane traf-
ficking and gene transcription. The model predicts that, through PKA
activation, vasopressin stimulates AQP2 exocytosis by inhibiting MAP
kinase signaling. The model also predicts that, through PKA activa-
tion, vasopressin stimulates Aqp2 transcription through induction of
nuclear translocation of the acetyltransferase EP300, which increases
histone H3K27 acetylation of vasopressin-responsive genes (con-
firmed by ChIP-seq).

CRISPR-Cas9 | phosphoproteomics | vasopressin | protein mass
spectrometry | next-generation sequencing

Heptahelical receptors that couple to the G protein stimula-
tory α-subunit (Gαs) regulate cell processes largely through

activation of protein kinase A (PKA). In a subset of G protein-
coupled receptors (GPCRs), ligand binding results in activation
of the heterotrimeric Gαs, which activates adenylyl cyclases and in-
creases intracellular cyclic AMP (cAMP). These Gαs-coupled re-
ceptors include those that regulate glycogenolysis in the liver
(glucagon and epinephrine), hydrolysis of triglycerides in adipose
tissue (epinephrine), secretion of thyroid hormone (thyroid-
stimulating hormone), synthesis of steroid hormones in the adrenal
cortex (adrenocorticotropic hormone), resorption of bone (para-
thyroid hormone), contractility and rate of contraction in the heart
(epinephrine), and water excretion by the kidney (vasopressin) (2).
Foremost among effectors of cAMP is PKA, also known as cAMP-
dependent protein kinase (3, 4). PKA is a basophilic S/T kinase in
the AGC family (5) that phosphorylates serines and threonines
in target proteins that possess basic amino acids (R>K) at posi-
tions −3 and −2 relative to the phosphorylation site [PKA target
motif: (R/K)-(R/K)-x-(pS/pT), where x is any amino acid] (6–8).
Lists of protein targets of PKA, identified in reductionist studies,
have been curated in databases such as Phospho.ELM (9), the
Human Protein Reference Database (10), PhosphoNET (11), and
PhosphoSitePlus (12), although it is likely that many direct PKA

targets are as yet unidentified. Some of the known PKA targets
are other protein kinases and phosphatases, meaning that PKA
activation is likely to result in indirect changes in protein phos-
phorylation manifest as a signaling network, the details of which
remain unresolved. To identify both direct and indirect targets of
PKA in mammalian cells, we used CRISPR-Cas9 genome editing
to introduce frame-shifting indel mutations in both PKA catalytic
subunit genes (Prkaca and Prkacb), thereby eliminating PKA-Cα
and PKA-Cβ proteins. This was followed by use of quantitative
(SILAC-based) phosphoproteomics to identify phosphorylation
sites whose phosphooccupancies are altered by the deletions.
Beyond this, we used additional large-scale methodologies [RNA-
seq (sequencing), ChIP-seq for histone H3 lysine-27 acetylation,
and standard SILAC-based quantitative protein mass spectrome-
try] to pinpoint downstream effects of PKA deletion associated
with changes in gene transcription and protein expression.
To do these studies, we used a cell line (mouse mpkCCD)

expressing the Gαs-coupled vasopressin receptor V2R (gene:
Avpr2) that mediates the action of the peptide hormone vaso-
pressin in the regulation of osmotic water transport in the kidney
(13). These cells grow well and are readily transfected, and yet
they manifest differentiated functions that closely mimic native
renal collecting duct principal cells (14–16). Thus, they provide a
model system conducive to genome editing, but with a turnover
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rate compatible with efficient metabolic labeling of proteins
required for SILAC quantification. These cells manifest vasopres-
sin responses characteristic of native renal principal cells, including
vasopressin-induced increases in adenylyl cyclase activity (14),
vasopressin-induced trafficking of the molecular water channel
aquaporin-2 (AQP2) to the plasma membrane (15), vasopressin-
induced increase in AQP2 protein stability (17), and vasopressin-
induced increases in transcription of the Aqp2 gene (16, 18).
The studies identified 229 phosphorylation sites in 197 proteins

that showed decreased phosphooccupancy in cells with CRISPR-
Cas9 deletion of PKA-Cα and PKA-Cβ, including 47 sites in which
phosphorylation was ablated by more than 90%. Many of these
PKA target sites are previously unidentified as PKA substrates.
Furthermore, there were many phosphorylation sites with in-
creased phosphooccupancy that possessed a proline at position
+1 relative to the phosphorylated amino acid. This indicates that
the PKA deletion secondarily activates one or more MAP kinases
or cyclin-dependent kinases. An ancillary finding was that ex-
pression of the Aqp2 gene is absolutely dependent on PKA. Using
large-scale data integration techniques, the quantitative proteomic,
phosphoproteomic, RNA-seq, and ChIP-seq datasets obtained in
this study were integrated with prior data from the literature to
identify a PKA signaling network that has been curated online as a
publicly accessible resource (https://hpcwebapps.cit.nih.gov/ESBL/
PKANetwork/). This network links direct PKA targets to the
known physiological responses to V2R signaling.

Results
To eliminate functional PKA protein, we used CRISPR-Cas9 to
create indel mutations in exons corresponding to the catalytic
regions of PKA-Cα and PKA-Cβ in mouse mpkCCD cells (Fig.
1A). Three distinct guide (g)RNAs were used for both genes, each
producing multiple clonal cell lines. Double-knockout (dKO) lines
were created using the PKA-Cβ knockout cell lines and super-
imposing PKA-Cα mutations (Fig. 1B). We raised isoform-specific
antibodies targeting epitopes upstream of the catalytic domains
and carried out Western blotting analysis revealing an absence of
the respective PKA catalytic subunit proteins in single- and
double-KO lines (Fig. 1C). Cell lines from CRISPR experiments
that retained expression of PKA were used as control lines (Fig.
1B, control A and control B, blue) for subsequent experiments.
Among all available dKO and control lines, three representative
dKO/control pairs were chosen for further studies. DNA se-
quencing (PCR/Sanger) identified specific indel mutations in
Prkaca and Prkacb of the dKO lines and demonstrated a lack of
PKA mutations in the control lines (Table S1).

PKA dKO Cells Are Viable and Retain Epithelial Structure and Function.
All dKO lines were viable, and grew at approximately the same
rates as control cells. The dKO cells exhibited intact epithelial
organization, as evidenced by immunofluorescence localization of
the tight junction marker ZO-1 and the basolateral plasma
membrane marker Na+-K+-ATPase (Fig. 1D). ZO-1 labeling at
the tight junctions was sustained, but appeared to be decreased in
the PKA dKO cells with increased ZO-1 labeling in the cell nuclei.
Transepithelial resistance values increased to high levels on day
1 after seeding as the cells became confluent (Fig. 1E). In-
terestingly, the transepithelial resistance values were moderately
lower in the PKA dKO cells relative to controls. We conclude that
the PKA dKO cells are viable and retain their epithelial archi-
tecture, and the ion permeability of the tight junctions appears to
be a possible target of PKA-dependent regulation.
We carried out Western blotting for aquaporin-2 in multiple

PKA-Cα and PKA-Cβ single-knockout lines as well as multiple
dKO lines along with the respective controls (Fig. 2 A–H). Both
single knockouts resulted in a reduction in AQP2 protein abun-
dance, although AQP2 abundance was decreased more in the
PKA-Cα single-KO clones (Fig. 2B) than in PKA-Cβ single-KO
clones (Fig. 2E). In the PKA dKO cells, AQP2 protein was un-
detectable, indicating that AQP2 protein expression requires PKA
(Fig. 2 G and H). Interestingly, knocking out PKA-Cα resulted in
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Fig. 1. Establishment and characterization of PKA-Cα single knockout, PKA-Cβ
single-knockout, and PKA double-knockout cell lines. (A) Location of sequences
targeted by guide RNAs in mouse Prkaca and Prkacb genes. Exons that code for
catalytic domains are shown in blue. Ex, exon. (B) Flowchart for the generation of
PKA dKO cell lines. Clones that have target gene expression and no detectable
mutation were used as controls (blue) for the respective knockout clones (red).
Three pairs of dKO clones and their respective control clones were selected for
subsequent experiments. (C) RepresentativeWestern blots for PKA-Cα and PKA-Cβ
proteins. (D) Immunofluorescence images showing a basolateral marker (Na+-K+

ATPase) and a tight junction marker (ZO-1) in PKA dKO and control cells. Merged
images include both x–y (Top) and x–z (Bottom thin panels) perspectives. (Scale
bars, 10 μm.) (E) Transepithelial resistance (TER) versus time after plating for three
pairs of PKA dKO and control cells. Values are mean ± SD (n = 6, *P < 0.05,
Student t test).
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a marked increase in PKA-Cβ protein (Fig. 2 A and C). Similarly,
knocking out PKA-Cβ resulted in an increase in PKA-Cα protein,
although the effect was less pronounced (Fig. 2 D and F). Both
findings point to potential compensatory responses.

Rescue of AQP2 Protein Expression by Transfection of Prkaca or Prkacb in
PKA dKO Cells. To further address the role of PKA in the regulation
of AQP2 protein abundance, we carried out rescue experiments in
which PKA dKO cells were transfected with plasmids to express
either PKA-Cα or PKA-Cβ (Fig. 2 I–K). As shown by immunoflu-
orescence labeling of vasopressin-treated cells in Fig. 2I, cell clusters
expressing either of the two transfected catalytic subunits had var-
iable (but readily detectable) AQP2 protein, while other cells in the
same monolayer that did not express PKA protein did not have
detectable AQP2. Fig. 2 J and K show corresponding Western
blotting results for additional rescue experiments. Despite a rela-
tively low transfection efficiency, AQP2 was readily detectable after
transfection with either PKA catalytic subunit when the cells were
exposed to vasopressin. We conclude that the vasopressin-mediated
increase in AQP2 protein abundance requires PKA.

RNA-Seq. Next, we asked two questions: (i) “Is the loss of AQP2
protein in the PKA dKO cells associated with loss of Aqp2
mRNA?” and (ii) “what other genes show changes in expression
with PKA deletion?” To address these questions, we carried out
RNA-seq in three PKA dKO clones vs. three separate control

clones with intact expression of PKA (Fig. 3 A and B). As shown in
Fig. 3A, reads corresponding to Aqp2 transcripts were virtually
absent in the PKA dKO cells (Upper Left). Thus, the absence of
AQP2 protein is due to an absence of Aqp2 mRNA. Fig. 3A also
shows examples of mapped reads for additional transcripts,
namely Prkaca (markedly decreased), Prkacb (unchanged), the
vasopressin receptor Avpr2 (relatively unchanged), Marcks (in-
creased), and Rhcg (increased). The decrease in Prkaca mRNA
could be due to a decrease in the stability of the mutant mRNA or
to a physiological effect on transcription. The latter possibility
could be seen, for example, if PKA protein were required for
Prkaca gene transcription in a manner similar to its role in regu-
lation of Aqp2 gene transcription. The full dataset (Dataset S1) is
summarized in Fig. 3B. Most mRNA species were relatively un-
changed in abundance. Interestingly, the mRNA for Aqp2 stood
out as the most profoundly suppressed transcript among all
10,190 quantified. Thus, PKA is required for Aqp2 gene expres-
sion. Transcripts with false discovery rate (FDR) <0.05 are in-
dicated by red points (n = 354). In Fig. 3B, only transcripts with
FDR <0.05 and jlog2(dKO/ctrl)j >2 are labeled. Both myristoy-
lated alanine-rich C-kinase substrate (Marcks) and the ammonia
transporter (Rhcg) matched this criterion and were increased in
abundance. Nine transcripts matched this criterion and were de-
creased, namely Aqp2, Prkaca, Pde4b, Zhx2, Gsdmc2, Gsdmc4,
Cd55, Adh1, and Tmprss4. In collecting duct cells, Tmprss4 has
been identified as an activator of the epithelial sodium channel
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Fig. 2. AQP2 abundance in PKA knockout cells and its rescue by PKA. All observations were made in the presence of dDAVP (0.1 nM continuously). (A, D, and G)
Western blots for PKA-Cα, PKA-Cβ, and AQP2 are shown for 12 control clones versus 12 PKA-Cα knockout clones (A), 13 control clones versus 11 PKA-Cβ knockout
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(19), a key protein in the regulation of blood pressure. Among
these transcripts, several were previously found to increase in re-
sponse to vasopressin in mpkCCD cells, namely Aqp2, Pde4b,
Gsdmc2, Adh1, Gsdmc4, and Tmprss4 (18, 20). Based on these
observations, we conclude that PKA signaling is important for
expression of a limited number of genes in addition to Aqp2.

RNA-seq data are curated in Genome Browser format at https://
hpcwebapps.cit.nih.gov/ESBL/Database/PKA-KO/.

SILAC-Based Quantitative Proteomics. Next, we asked, “What pro-
teins, aside from AQP2, show changes in abundance in the PKA
dKO cells versus control?” For this, we carried out protein mass
spectrometry (LC-MS/MS) using SILAC (stable isotope labeling
of amino acids in cell culture) (21) for quantification (Fig. 3 C–F).
Fig. 3C shows examples of MS1 spectra. They confirm the absence
of PKA-Cα and PKA-Cβ protein in the PKA dKO cells, and also
confirm the profound decrease in AQP2 protein. In contrast,
β-actin abundance was virtually unchanged. Among the 7,647
proteins quantified in all three biological replicates, abundances of
most were relatively unchanged (Fig. 3D). Fig. 3E is a volcano
plot in which only proteins with FDR <0.05 (red points) and
jlog2(dKO/ctrl)j >2 are labeled (Dataset S2). The data confirm the
profound decrease in AQP2 protein in the PKA dKO cells dem-
onstrated previously by Western blotting. Fig. 3F compares the
mRNA responses from the RNA-seq data with protein responses
from the quantitative mass spectrometry data (three replicates)
(Dataset S3). Surprisingly, there was a broad correlation between
the change in transcript abundance and the change in protein
abundance (R = 0.445, P < 2.2 × 10−16), even among those with
relatively small changes, indicating that PKA deletion has a broad
effect across the expressed transcriptome. The gene products la-
beled in red are those with FDR <0.05 for both measures. Again,
aquaporin-2 changes were greatest among all gene products
quantified by both measures. Note also that a few proteins showed
large changes in abundance in the PKA dKO without changes in
transcript abundance, presumably due to selective regulation of
translation or to selective control of protein stability.

Quantitative Phosphoproteomics. To identify signaling events down-
stream of PKA, we carried out SILAC-based quantitative phos-
phoproteomics in three distinct PKA dKO clones paired with control
clones in which PKA was not deleted (Fig. 4); 13,913 phosphopep-
tides were quantified in at least two of three dKO/control pairs and
9,936 were quantified in all three pairs (Dataset S4). Most quan-
tified phosphopeptides showed no substantial change in abun-
dance (Fig. 4A). Among the phosphorylation sites found to be
decreased [dKO/control (ctrl) <0.6], there was a predominance
of sites with arginine (R) or lysine (K) in position −3 relative to
the phosphorylated amino acid, indicating decreased phos-
phorylation by one or more basophilic protein kinases (AGC or
CAMK families; Fig. 4A, Upper Left). The pattern seen here
resembles that seen for phosphorylation events resulting from
incubation of protein mixtures with recombinant PKA, in-
cluding the preference for amino acids with branched-chain
aliphatic side chains in position +1 (8).
Among phosphorylation sites found to be increased (dKO/

ctrl >1/0.6 = 1.667), there was a predominance of sites with pro-
line (P) in position +1, indicating increases in phosphorylation by
proline-directed kinases (CMGC family), which include mitogen-
activated protein kinases (MAPKs) and cyclin-dependent protein
kinases (Fig. 4A, Upper Right). This finding is consistent with the
view that one or more proline-directed kinases are negatively
regulated either directly or indirectly by PKA in renal epithelial
cells (22). Fig. 4B shows the distributions of amino acid sequence
motifs among the phosphopeptides decreased in the PKA dKO
cells (Upper) and increased in the PKA dKO cells (Lower). Among
those decreased, 33.2% had arginine or lysine in position −3
(basophilic targets). Among those increased in the PKA dKO,
53.4% had proline in position +1 (CMGC targets).
We next asked the question, “Do phosphorylation sites that

nominally fit the model for PKA targets [motif R-(R/K)-X-pS] get
phosphorylated by PKA if the site is also a nominal proline-directed
site with proline in position +1?” The answer as revealed in Fig. 4C
is that proline in position +1 appears to block PKA-mediated
phosphorylation. Specifically, none of the sites with the motif
R-(R/K)-X-pS-P (nominally basophilic with proline in position +1)
showed profound decreases in phosphorylation in the PKA dKO
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cells. Among the basophilic sites with decreased phosphorylation in
the PKA dKO cells, 47 showed decreases of >90%, and are here
considered to be likely direct targets of PKA (Dataset S5). Some
could be indirect targets of PKA, due to PKA-mediated activation
of other basophilic protein kinases. Additionally, the phosphopro-
teomic analysis identified 182 basophilic sites that showed lesser
decreases in phosphooccupancy in the PKA dKO cells (0.1< dKO/
ctrl <0.6) (Dataset S5). Many of these are also likely PKA sites that
presumably can also be phosphorylated by other basophilic protein
kinases that were not deleted (e.g., protein kinase G or calmodulin-
dependent kinase II). They include several known PKA target sites
including Ser552 of β-catenin (Ctnnb1), Ser104 of cAMP-regulated
phosphoprotein 19 (Arpp19), Ser885 of Rho guanine nucleotide
exchange factor 2 (Arhgef2), Ser155 of Bcl2-associated agonist of
cell death (Bad), and Ser1406 of aspartate carbamoyltransferase
(Cad) (cf. PhosphoSitePlus and Phospho.ELM databases). These
proteins are distributed among several functional categories rele-
vant to the physiological actions of vasopressin in collecting duct
cells (Fig. 4D). Among the PKA target substrates, four protein
kinases were identified with decreased phosphorylation in the PKA

dKO cells at sites that are known from prior evidence to affect their
enzymatic activity, namely Ser358 of Sik2 (salt-inducible kinase 2),
Ser17 of Src, Ser2448 of mTOR, and Ser973 of Map3k5 (cf. Kin-
exus PhosphoNET database). These form the core of a proposed
PKA signaling network (see below). Note in addition that there
were multiple phosphorylation sites that decreased in the PKA
dKO cells but did not possess upstream amino acids compatible
with phosphorylation by PKA (Fig. 4B), including several protein
kinases (Table S2). These sites are presumably downstream of but
not direct targets of PKA.
In a previous study, we used SILAC to quantify phosphopro-

teomic responses to vasopressin in mpkCCD cells (22). Of the
853 phosphorylation sites quantified in that study, 458 phosphory-
lation sites were also quantified in the PKA dKO cells in the present
study. Fig. 4E compares these values for phosphorylation sites
categorized into four general categories by kinase target motif. In
general, a majority of sites showed little change by either measure.
However, the distribution in the basophilic group skewed into the
right lower quadrant, indicating that sites whose phosphorylation
increased in response to vasopressin showed a corresponding
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decrease in phosphooccupancy in the PKA dKO. These sites
were: Bad at S155, Cad at S1406, Ctnnb1 at S552, Fam83h at
S970, Fam129a at S601, Golga5 at S116, Map3k2 at S153,
Map4k5 at T400, Mcm2 at S21, Mtch1 at S381, Plekhg3 at S737,
Reps1 at S272, Scyl2 at S677, Slc33a1 at S42, and Syne2 at
S6371. Furthermore, the distribution in the proline-directed
group skewed into the left upper quadrant, indicating that sites
whose phosphorylation decreased in response to vasopressin
showed a corresponding increase in phosphooccupancy in the
PKA dKO (Fig. 4E). These phosphorylation sites were: Add3 at
S681, Agfg1 at S181, Cnot2 at S165, Cxadr at S332, Dbnl at S291,
Eps8l1 at T187, Eps8l2 at S483, Gprc5a at S344, Hdgf at T200,
Limch1 at S973, Lrba at S979, Lrrc16a at S1295, Mcm2 at S27,
Ppl at S14, Rab12 at S20, Slc9a3r1 at S275, and Tjp2 at S239. In
contrast, changes in the acidophilic and S/T-rich groups were
small and distributed symmetrically about the origin (Fig. 4E).

Phosphorylation of AQP2 in PKA Double KO. The water channel
aquaporin-2 is phosphorylated on four serines within the carboxyl-
terminal 16 amino acids (23) (Fig. 5A). Phosphorylation at each of
these sites is regulated by vasopressin via increases in intracellular
cAMP (24) (Fig. 5B). Because the PKA dKO cells did not express
the Aqp2 gene, assessment of the role of PKA in phosphorylation of
these sites required transfection to express AQP2. Phosphorylation
changes in AQP2 were assessed with phospho-specific antibodies
(24) both byWestern blotting (Fig. 5C) and by immunofluorescence
(Fig. 5D). Phosphorylation at Ser269 of AQP2, a vasopressin-
regulated site critical to the regulation of AQP2 endocytosis (24),
was nearly undetectable in the PKA dKO cells and did not increase
with the adenylyl cyclase activator forskolin (Fig. 5C, Left) or the
vasopressin analog dDAVP (1-desamino-8-D-arginine-vasopressin)
(Fig. 5D, Top) in contrast to the control cells with intact PKA. Thus,
phosphorylation of AQP2 at Ser269 is PKA-dependent, although
not necessarily by direct PKA-mediated phosphorylation. Phos-
phorylation at Ser264, a site normally increased in phosphooccu-
pancy by vasopressin (24), is sustained in the PKA dKO cells,
although it appears to be somewhat diminished and the increase
that normally occurs in response to vasopressin did not occur.
Because Ser264 of AQP2 is phosphorylated in the absence of
PKA, we conclude that other kinases can phosphorylate it, al-
though the response to vasopressin depends on PKA. Phosphor-
ylation at Ser261 of AQP2, which normally decreases with
vasopressin (23), was seen to be markedly increased in the PKA
dKO cells, but did not decrease with forskolin or vasopressin,
contrary to observations in the control cells with PKA. In fact, there
was a small, but statistically significant, increase in Ser261 phos-
phorylation with forskolin in the PKA dKO cells (Fig. 5C), in-
dicating the presence of a PKA-independent increase in the activity
of one or more MAP kinases. Phosphorylation at Ser256 is seen
with a high level of phosphooccupancy in either the absence or
presence of vasopressin in mpkCCD cells (22) or native rat inner
medullary collecting duct (IMCD) cells (25), and is generally
regarded to be a PKA target based on the surrounding sequence,
in vitro phosphorylation by PKA, and inhibition by PKA inhibitors,
as discussed by Bradford et al. (26). Phosphorylation at this site
was readily detectable in the PKA dKO cells and did not change
with forskolin (Fig. 5C) or vasopressin (Fig. 5D). Thus, one or
more basophilic protein kinases other than PKA can phosphory-
late AQP2 at Ser256 in intact cells, that is, PKA is not obligatory
for Ser256 phosphorylation. Previous studies have pointed to a
role for one or more isoforms of calmodulin-regulated kinase 2
(CAMK2) in the phosphorylation of AQP2 at Ser256 in mpkCCD
cells (27) and native rat IMCD cells (26). In additional experi-
ments in the PKA-Cα and PKA-Cβ single knockouts, vasopressin-
mediated phosphorylation changes in Ser269, Ser264, and
Ser261 in endogenously expressed AQP2 were sustained, although
attenuated in the PKA-Cα knockout cells (Fig. S1).
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E8880 | www.pnas.org/cgi/doi/10.1073/pnas.1709123114 Isobe et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
23

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1709123114/-/DCSupplemental/pnas.201709123SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1709123114


www.manaraa.com

Functional Relevance of PKA-Mediated Signaling. The vasopressin
V2 receptor-expressing cells of the kidney (collecting duct prin-
cipal cells) have been comprehensively studied, revealing that
several cellular physiological processes are regulated by vaso-
pressin (Fig. 6A). We combined the data obtained in this study
with prior evidence to build a PKA-dependent signaling network
that lays out data-compatible mechanisms for the vasopressin-
mediated functional responses. Components of the network,
addressing each process in Fig. 6A, are shown in Fig. 6 B–H. The
network can be viewed at a permanent publicly accessible website
that provides documentation for each network element as “mouse-
over” text (https://hpcwebapps.cit.nih.gov/ESBL/PKANetwork/).
This network, while undoubtedly incomplete, provides a framework
for future studies that will refine the model. In the following, we
investigate a few key network components.
PKA-dependent transcriptional regulation. Vasopressin increases RNA
polymerase II occupation across the body of the Aqp2 gene, con-
comitant with an increase in Aqp2 mRNA, pointing to a direct
effect on Aqp2 gene transcription (18). The subnetwork shown in
Fig. 6D identifies six PKA targets that connect with documented
downstream targets relevant to the regulation of Aqp2 gene tran-
scription, namely β-catenin (Ctnnb1), CREB (Creb1), salt-inducible
kinase 2 (Sik2), GLI-Kruppel family member GLI3 (Gli3), nu-
clear factor of activated T cells cytoplasmic 2 (Nfatc2), and type
3 InsP3 receptor (Itpr3). Full documentation is given at https://
hpcwebapps.cit.nih.gov/ESBL/PKANetwork/Transcription.html.
One target is Nfatc2, which has previously been demonstrated to
bind to an NFAT-binding motif that is located 489 bp upstream of
the Aqp2 transcription start site (28) and to regulate Aqp2 gene

expression (29). Its translocation into the nucleus is regulated by the
phosphatase calcineurin via calcium signaling (30). Vasopressin
causes calcium mobilization in collecting duct principal cells in the
form of trains of aperiodic calcium spikes typical of Ca2+-induced
Ca2+ release channels. One such channel, Itpr3, is known to un-
dergo PKA-mediated phosphorylation at Ser934 and Ser1832 (31).
In the PKA dKO cells, these two sites showed a profound decrease
in phosphorylation (Ser934, dKO/ctrl: 0.005; Ser1832, dKO/ctrl:
0.135). PKA phosphorylation at these sites is known to enhance
InsP3-induced Ca2+ mobilization (32). PKA is also known to
phosphorylate S358 of Sik2 (33), reducing its enzymatic activity (34)
via 14-3-3 binding. In Sik2, two sites showed decreased phosphor-
ylation in PKA dKO cells, namely Ser358 (dKO/ctrl: 0.043) and
Ser587 (dKO/ctrl: 0.484). Downstream targets of Sik2 are two
transcriptional coactivators, Crebbp and Ep300, as well as a CREB-
regulated transcriptional coactivator (Crtc1 or Crtc2) (35). Sik2-
mediated phosphorylation inhibits nuclear translocation of these
coactivators (36). The network predicts that vasopressin working
through PKA causes nuclear translocation of Nfatc2 (due to in-
creased intracellular Ca2+), Crebbp, and/or Ep300, as well as Crtc
isoforms due to decreased Sik2 activity. Fig. 7A shows experiments
that test these predictions, revealing a vasopressin-induced increase
in nuclear Nfatc2, Crtc1, and Ep300 but not Crebbp. However,
translocation of these factors is not seen in the PKA dKO cells.
Crebbp and Ep300 are histone acetyltransferases that acety-

late histone H3 lysine-27, a histone mark associated with open
chromatin and increased transcription (37). The translocation of
Ep300 predicts that vasopressin, working through PKA, may
increase histone H3K27 acetylation of some genes. We tested
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this by performing ChIP-seq for this modification. As seen in Fig.
7B, there was a marked increase in histone H3K27 acetylation
across the body of the Aqp2 gene, and in the promoter, as well as in
a region ∼6,000 bp upstream of the Aqp2 transcriptional start site.
The adjacent Aqp5 and Aqp6 genes did not show parallel changes in
histone H3K27 acetylation. Fig. 7B, Lower shows increased histone
H3K27 acetylation for another vasopressin-induced gene, Baiap2l2,
which is decreased in expression in the PKA dKO cells (compare
Fig. 3F), while adjacent genes show no change. Examples of the
H3K27Ac ChIP-seq data are displayed in Genome Browser format
at https://hpcwebapps.cit.nih.gov/ESBL/Database/PKA-KO/.

PKA-dependent actin depolymerization. The small GTP-binding pro-
teins Rho, Rac, and Cdc42 are involved in regulation of the state
of actin polymerization. Prior studies have demonstrated that
vasopressin causes actin depolymerization in both the apical cell
cortex (38) and basal stress fibers in epithelial cells (39). The
subnetwork shown in Fig. 6E identifies multiple Rho/Rac/Cdc42
GEFs and GAPs with phosphorylation sites that show decreased
phosphooccupancy in the PKA dKO cells. These phosphoproteo-
mic findings in the PKA dKO suggest that the actin-depolymerizing
effects of vasopressin could be mediated by PKA. To test this, we
carried out phalloidin labeling of control and PKA dKO cells, both
in the presence and absence of the V2-receptor selective agonist
dDAVP (Fig. 7C). dDAVP caused predominantly basal actin de-
polymerization in the control cells but not in the PKA dKO cells,
supporting the hypothesis.
PKA-dependent AQP2 trafficking. Vasopressin regulates water per-
meability in the collecting duct by stimulating redistribution of
the AQP2 water channel to the apical plasma membrane,
thereby increasing the water permeability of collecting duct cells
(40). Fig. 6 G and H shows that several PKA targets found in this
study connect with the processes of exo- and endocytosis, namely
Pi4kb (Ser511), Aqp2 (Ser269), Herc4 (Ser830), Hect1 (Ser1389),
Nedd4l (Ser371, Ser477), Mtor (Ser2448), Itsn2 (Ser491), and
Fgd3 (Ser442). These phosphoproteomic findings in the PKA
dKO suggest that the effects of vasopressin on AQP2 trafficking
to the apical plasma membrane could be mediated by PKA. To
test this directly, we carried out immunocytochemical localiza-
tion of AQP2 in control and PKA dKO cells transfected with
AQP2 and challenged with either dDAVP or vehicle for 30 min
(Fig. 7D). dDAVP caused translocation of AQP2 to the apical
plasma membrane in the control cells but not in the PKA dKO
cells, supporting the hypothesis.

Discussion
To identify signaling processes downstream of PKA activation,
we have carried out quantitative proteomics, quantitative phos-
phoproteomics, ChIP-seq for chromatin modifications, and RNA-
seq in epithelial cell lines in which both PKA catalytic subunits
have been deleted using CRISPR-Cas9 genome editing. We have
combined the current data with prior data to derive a signaling
model that can explain the functional responses to GPCR acti-
vation by vasopressin in mammalian epithelial cells. Individual
aspects of the model represent hypotheses, only a few of which
we have addressed in the present paper. The model provides a
framework not only for understanding how vasopressin regulates
the function of kidney cells but likely overlaps PKA signaling
pathways present downstream of other Gαs-linked GPCRs. This
network is provided as a permanent online resource that includes
documentation for the nodes and edges revealed as popups, fa-
cilitating access to the original evidence.
A byproduct of the approach is an expanded list of phosphory-

lation target sites for protein kinase A, which is also provided as a
permanent publicly accessible online resource. The identification
of these targets greatly expands the list of known PKA substrates
already documented in various databases. (Some known PKA
targets were not detected, e.g., Ser188 of RhoA, whose tryptic
peptide was likely too small to detect with the method used.) Be-
yond the direct targets of PKA, there was a large number of
phosphorylation sites that showed increases in phosphooccupancy
in the PKA double-knockout cells, most of them putative targets of
MAP kinases, which phosphorylate serines or threonines with
proline in position +1 relative to the phosphorylated amino acid.
This result reveals that PKA activation in the present context in-
hibits MAP kinase signaling, consistent with findings of prior
studies in epithelial cells (22, 41). This conclusion contrasts with
several prior studies showing that some GPCRs increase MAP
kinase signaling (42). The mechanism of activation of MAP kinases
is incompletely understood, but is thought to be dependent on
β-arrestin, protease-mediated EGF-receptor activation, or integrin-
associated scaffolding by processes that are presumably not PKA-
dependent. The general picture may be one of balanced effects on
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MAP kinase signaling, with PKA-independent activation being
opposed by PKA-dependent inactivation. Consistent with this,
when PKA dKO cells were challenged with vasopressin, Ser261 of
AQP2, an ERK2 substrate, showed a significant increase in phos-
phooccupancy, in contrast to the decrease seen with intact PKA.
In renal collecting duct cells, vasopressin regulates the water

channel protein aquaporin-2 to control water excretion. It does so
mainly by two mechanisms: (i) short-term effects to regulate traf-
ficking and insertion of the AQP2 water channel into the plasma
membrane (40), and (ii) long-term effects to alter AQP2 protein
abundance largely through regulation of Aqp2 gene transcription
(43). The results of the present study demonstrate that PKA is
required for both processes. With regard to AQP2 trafficking, prior
evidence for a role for PKA has been derived from the use of the
protein kinase inhibitor H89 (44), which is known to inhibit several
basophilic kinases other than PKA (26). Trafficking is governed by
direct phosphorylation of AQP2, which is inhibited only by high,
but not low (PKA-selective), concentrations of H89 (26). With
regard to vasopressin-stimulated Aqp2 gene transcription, our re-
sults suggest a direct role for PKA. A previous study used trans-
genic mice expressing a mutant PKA regulatory subunit (RIα) to
create a dominant-negative phenotype with constitutively inactive
PKA. Experiments in these mice did not demonstrate a change in
AQP2 mRNA in collecting duct cells (45). It seems possible that
PKA inactivation in these cells could have been incomplete or
compartmentalized (46).

Materials and Methods
SI Materials and Methods includes a more detailed description of methods
and materials.

Cell Lines. The immortalizedmpkCCD line was produced in ref. 13 and recloned
to maximize AQP2 abundance (15). mpkCCD cells were transfected with
pCMV-Cas9-GFP plasmids containing gRNAs specific for Prkaca or Prkacb genes
(Sigma), using Lipofectamine 3000 (Invitrogen) according to the manufac-
turer’s instructions. GFP-expressing cells were sorted into 96-well plates (∼1 cell
per well) using a BD FACSAria II cell sorter for clone selection. Target gene
expression was evaluated by Western blotting for PKA-Cα and PKA-Cβ, and the
genomic indel mutations were identified by Sanger sequencing. To generate
PKA double-knockout cells, PKA-Cβ knockout cells were transfected with the
CRISPR-Cas9 plasmids targeting Prkaca. Control lines weremade from cells that
were carried through this protocol but continued to express both PKA genes
(unmutated sequence confirmed by Sanger sequencing).

Cell Culture and Transient Transfection. Cells were maintained in either
complete medium, DMEM/F-12 containing 2% serum and other supplements
(5 μg/mL insulin, 50 nM dexamethasone, 1 nM triiodothyronine, 10 ng/mL
epidermal growth factor, 60 nM sodium selenite, 5 μg/mL transferrin; all
from Sigma), or simple medium (DMEM/F12 with dexamethasone, sodium
selenite, and transferrin only). Except where indicated, cells were seeded on
permeable membrane supports (Transwell) and grown on complete media
containing 0.1 nM 1-desamino-8-D-arginine-vasopressin for 4 d. Then, the
medium was changed to simple medium with 0.1 nM dDAVP and main-
tained for 3 d to ensure complete polarization. Transepithelial resistance
was measured by EVOM (WPI), and growth medium was changed daily. For
short-term vasopressin stimulation, dDAVP-conditioned cells were main-
tained in the absence of dDAVP for 2 h, and were then treated with either
0.1 nM dDAVP or vehicle for 30 min. In rescue and AQP2 trafficking exper-
iments, the cells were transfected with plasmid vectors to express PKA-Cα,
PKA-Cβ, or AQP2 (Sino Biological; MG50618-UT, MG50629-UT, or MG57478-
UT) using Lipofectamine 3000. At the time of transfection, the cells were
seeded on permeable supports and then grown to confluence.

Generation of Anti–PKA-Cα and –PKA-Cβ Antibodies. Peptides corresponding to
amino acids 29 to 44ofmouse PKA-Cα (29-KKWETPSQNTAQLDQC-44) and PKA-
Cβ (29-RKWENPPPSNAGLEDC-44) were synthesized, HPLC-purified, and conju-
gated to KLH. Rabbits were immunized using a standard protocol. Antibodies
were affinity-purified using peptide affinity columns (Pierce; SulfoLink Kit).
The antibodies’ specificities were confirmed by dot blotting against the pep-
tides, followed by Western blotting of cell homogenates from the PKA-Cα
single knockout, PKA-Cβ single knockout, and PKA dKO cells.

Western Blotting and Nuclear Isolation. Cells were lysedwith Laemmli buffer (1.5%
SDS, 10 mM Tris, pH 6.8, protease and phosphatase inhibitors), and Western
blotting was carried out as previously described (15). Nuclear and cytoplasmic
extracts of scraped cells were prepared using the Nuclear Protein Extraction Kit
(Thermo Fisher Scientific) following the manufacturer’s instructions.

Immunofluorescence Microscopy. Cells were washed with PBS, fixed with 4%
paraformaldehyde for 10 min, and permeabilized (0.1% BSA, 3% Triton
X-100 in PBS) for 10 min. The cells were labeled as previously described (18)
using primary antibodies (or phalloidin) as listed in Table S3. Confocal
fluorescence images were obtained on an LSM 780 microscope (Zeiss).

SILAC Quantification of Proteins. The control cell lines were grown in culture
medium containing 13C6

15N4 arginine and 13C6 lysine (heavy channel). PKA
dKO cell lines were grown with 12C6

14N4 arginine and 12C6 lysine (light
channel). The cells were cultured for 17 d (five passages) to reach >99.9%
labeling efficiency (20). Heavy- or light-labeled cells were grown on permeable
supports for 7 d in the presence of dDAVP (0.1 nM) in SILAC medium. Cells
were lysed with 8 M urea and sonicated. Equal amounts (2 mg) of heavy and
light protein extracts were mixed. The samples were reduced, alkylated, and
diluted with 20 mM triethylammonium bicarbonate buffer (pH 8.5) to reduce
urea to 1 M before digestion (trypsin/LysC; Promega). Peptides were desalted
using hydrophilic–lipophilic–balanced extraction cartridges (Oasis), and frac-
tionated with high-pH reverse-phase chromatography (Agilent; 1200 HPLC
system). The fractions were split for total peptide analysis (2%) and phos-
phopeptide enrichment (49%, ×2), using either Fe-NTA or TiO2 columns
(Thermo Fisher Scientific). The enriched peptides were desalted using graphite
columns, vacuum-dried, and stored at −80 °C. Peptides were resuspended with
0.1% formic acid before mass spectrometry analysis.

Total and phosphopeptides were analyzed using a Dionex UltiMate
3000 nano LC system connected to an Orbitrap Fusion ETD mass spectrometer
equipped with an EASY-Spray ion source (Thermo Fisher Scientific). Peptides
were introduced into a peptide nanotrap at a flow rate of 6 μL/min. The
trapped peptides were fractionated with a reverse-phase EASY-Spray PepMap
column (C18, 75 μm × 25 cm) using a linear gradient of 4 to 32% acetonitrile in
0.1% formic acid (120 min at 0.3 μL/min). MS spectra were analyzed using
Proteome Discoverer 1.4. Peptide–spectra matching used both Mascot and
SEQUEST. The mouse Swiss-Prot (July 10, 2016) database was used (false dis-
covery rate < 0.01, peptide rank = 1). Relative quantification of peptides and
phosphopeptides was performed using the quantification module within
Proteome Discoverer 1.4, which calculates relative peptide abundance ratios
from light and heavy channels using the areas under the curve for recon-
structed MS1 ion chromatograms. Phosphorylation motifs were identified us-
ing PhosphoLogo (https://hpcwebapps.cit.nih.gov/PhosphoLogo/).

RNA Isolation and Sequencing. Total RNA was isolated from three biological
replicates of PKA dKO and control cells using a Direct-zol RNA MiniPrep Plus
Kit (Zymo Research) following the manufacturer’s protocol. cDNA sequenc-
ing libraries were prepared from 260 ng of total RNA for each biological
replicate using a TruSeq Stranded Total RNA Library Prep Kit after removal
of rRNAs (Ribo-Zero rRNA Removal Kit; Illumina). The quality of the isolated
total RNA and the synthesized cDNA was examined using an RNA 6000 Pico
Kit (Agilent) and High Sensitivity DNA Analysis Kit (Agilent), respectively.
Approximately 40 to 50 million 2 × 50-bp paired-end reads were sequenced
by HiSeq 3000 (Illumina). Raw reads were mapped to mouse transcript sets
(GRCm38.p5, comprehensive gene annotation) from GENCODE using STAR
version 2.5.2a (default parameters). Read counts of genes were calculated
using HOMER (4.8). The read counts were filtered (cpm > 4) and analyzed for
differential expression between PKA dKO and control using default TMM
(trimmed mean of M values) normalization within edgeR (3.10).

ChIP-Seq Analysis for Acetylated Histone H3K27. After treatment with dDAVP
(0.1 nM) or vehicle for 24 h, cells were processed for ChIP using the truChIP
Chromatin Shearing Reagent Kit (Covaris) following the manufacturer’s pro-
tocol. Immunoprecipitations were carried out (SimpleChIP Chromatin IP Kit;
Cell Signaling) using an anti-H3K27Ac antibody (Abcam; ab4729). Sheared
chromatin was used as input control and anti-rabbit IgG was used as negative
control in immunoprecipitation. Immunoprecipitated samples were incubated
with proteinase K at 65 °C overnight. Gel-purified DNA fragments were used
to prepare cDNA libraries using an Ovation Ultralow Library System (NuGen).
Libraries (200 to 400 bp) were sequenced on a HiSeq 2000 platform (Illumina)
to generate single-end 50-bp reads. The sequences weremapped to the mouse
reference genome (mm10) using the Burrows–Wheeler Aligner.

Isobe et al. PNAS | Published online October 2, 2017 | E8883

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
23

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1709123114/-/DCSupplemental/pnas.201709123SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1709123114/-/DCSupplemental/pnas.201709123SI.pdf?targetid=nameddest=ST3
https://hpcwebapps.cit.nih.gov/PhosphoLogo/


www.manaraa.com

Construction of a PKA Signaling Network. Protein kinases and phosphatases with
phosphorylation sites thatwere significantly decreased or increased in abundance
in PKA dKO cells were selected from the phosphoproteomic data. Among these,
the phosphomodifications known to be associated with changes in enzymatic
activity were identified using data fromKinexus PhosphoNET (www.phosphonet.
ca/) and Signor 2.0 (signor.uniroma2.it/). These kinases were mapped to specific
cellular processes using Gene Ontology Biological Process and Molecular Func-
tion terms. Those related to known regulatory actions of vasopressin in renal
epithelial cells (Fig. 6A) were retained for further analysis. The known substrates
of these kinases and phosphatases were identified using Kinexus PhosphoNET
and by direct PubMed searches. These substrate phosphosites were mapped to
the phosphoproteomic data for PKA dKO/controls generated in this paper,
creating node–edge–node triplets representing elements of the network. These
triplets were stitched together and tied to regulatory functions of vasopressin
using prior data from the literature along with RNA-seq and histone H3K27Ac
ChIP-seq data. The individual protein nodes of the network were annotated with
prior information about their regulation in response to vasopressin in renal
epithelial cells using BIG (https://big.nhlbi.nih.gov/index.jsp) (47) and from specific
PubMed searches where appropriate. In the network, direct PKA phosphoryla-
tion target sites were assigned from SILAC phosphoproteomic data based on
two criteria: (i) the presence of R or K in position −3 relative to the phosphor-
ylated S or T, and (ii) phosphooccupancy of the site significantly decreased in

PKA double-KO relative to control cells. Network visualization was achieved by
creating a separate subnetwork for each functional response listed in Fig. 6A as
separate but interlocking html files. The evidence for individual elements of the
network is shown as mouse-over popups. The html files have been mounted on
a permanent, publicly accessible website.

Statistical Analysis. Statistical methods are described in SI Materials andMethods.

Data Availability. Protein mass spectrometry data (raw files, search results,
and spectra) have been uploaded to the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier PXD005938. The
FASTQ sequences and metadata for RNA-seq and ChIP-seq studies have been
deposited in National Center for Biotechnology Information’s Gene Ex-
pression Omnibus (GEO) database (accession no. GSE95009).
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